Randomized Trials

(experimental; interventional; community trials; health care trials)

- **Disadvantages:**
 - Costs
 - Feasibility
 - Limited exposures (unethical except in therapy issues)
 - Limited outcomes (applicable to common diseases/exposures
 - Validity
 - Placebo Effect
 - Generalizability
 - Differential misclassification of outcome (measurement bias)
 - Differential misclassification of exposure (selection bias)
 - Confounding (unbalanced groups)

Analysis of Randomized Trials

(experimental; interventional; community trials; health care trials)

- Outcome continuous: Difference between means
 - T-tests; difference between means
- Outcome dichotomous: (yes/no)
 - Event ratio
 - Incidence rate ratio
 - Survival analysis
- Measures of Association (causal; non-causal; chance; confounding; bias)
 - Correlation coefficients (r)
 - Differences between means
 - Regression coefficients
 - Relative risks
Proving “Causality”

- **RCT** best study design (only one able to prove causality)
- Temporal relationship (Exposure precedes event)
- Dose-response; consistency; biological plausibility; ? Alternative explanations; Cessation of Exposure; Consistency with other observations; Specificity of association
- Strength of association (not statistical significance!)
 - Large difference between means
 - Correlation coefficients
 - Relative risks (rate ratio, OR, Obs/Exp, SMR, SIR, PMR, PIR, Hazard ratio...)

Threats to External & Internal Validity

[external validity = generalizability; internal validity = internal consistency]

- **External:**
 - Narrow selection criteria
 - Volunteer bias
 - Prevalence (survivor) bias
- **Internal:**
 - non-differential misclassification (too many false negatives & false positives = random measurement error)
 - Differential misclassification (true bias)

Threats to Validity (RCT)

- Placebo effect
- Generalizability (volunteer bias)
- Differential misclassification of Outcome (measurement bias; experimenter & recall bias) [masking best countermeasure]
- Differential misclassification of Exposure (selection bias; selective dropout)
- Confounding (faulty randomization; selective dropout)
Bias

- Measurement; observational; informational
- Recall or selective recall
- Experimenter
- Regression to mean
- Cross-over (contamination)
- Selection
- Self-selection
- Selective drop-out
- Surveillance (detection; ascertainment)

Observational Study Types

- Cohort (select sample without outcome of interest [exposed/non-exposed] & follow for change [disease onset] or no change
- Case-Control (select cases/non cases then ascertains prior exposure in both)
- Cross-sectional (simultaneous measurement of exposure/outcome; prevalence)
- Ecological (exposure/outcome for geographic areas [populations not individuals]

Cohort Study

(follow-up; longitudinal; prospective; incidence study)
[Defined group followed over time]

- Begin with group(s) without outcome of interest, some exposed some not, follow over time to assess onset or change in disease

<table>
<thead>
<tr>
<th>Disease developed</th>
<th>Disease not developed</th>
<th>Incidence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposed</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Not exposed</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Incidence Rate = a + b - c + d

(Rate Ratio) RR = IR_{exposed}/IR_{non-exposed} = a/b / c/d

- No randomization or therapy – just observation
- Various Cohort Types:
 - Special exposure cohort (unique/relatively rare exposure
 - General population cohort (exposure common)
 - Prospective
 - Retrospective
 - Ambidirectional
Analysis of Cohort Study
(follow-up; longitudinal; prospective; incidence study)
[Defined group followed over time]

- Age-adjusted rate = Exp Events/Stand.population
- Standardized Incident Rate (SIR)
 - SIR = O/EAA
- Standardized Mortality Rate (SMR)
 - SMR = O/EAA; Observed deaths/age-adjust X 100
- Rate Ratio: RR = IRExposed/IRNon-exposed

Advantages/disadvantages
Cohort Studies

Advantages:
- Time sequence (exposure precedes disease)
- Ethical (exposure not assigned)
- Rare exposure can be studied
- Multiple outcomes can be assessed
- Not dependent on past records
- Exposure-specific IR can be determined
- All outcomes (mild-severe) can be ascertained
- Bias can be minimized in measurement of exposure

Disadvantages:
- Cost
- Not appropriate for rare diseases
- Validity (cross-over; differential misclassification of O & E)
- Confounding possible
- Generalizability may be limited

Case-Control Studies (case-referent; case-comparison; retrospective studies)

Begin with subjects that have Outcome of interest, identify controls
– then assess previous Exposure in both groups

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Were exposed</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Were not exposed</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>Totals</td>
<td>a+c</td>
<td>b+d</td>
</tr>
</tbody>
</table>

- Proportion exposed: a/c
- Rate Ratio (RR): OR = good estimate of RR = ad/bc
- "matched" OR = b/c
Case-Control Studies (case-referent; case-comparison; retrospective studies)

Advantages:
- Rare diseases can be studied
- Multiple exposures can be simultaneously investigated
- Efficient (fewer subjects)
- Ethical (no safety concerns)
- Good estimate of RR (OR: good estimate of RR)
- Can be "nested" in RCT or Cohort studies

Disadvantages:
- Cannot measure incidence rates
- Validity problems (prevalence bias; temporal relationships [did exposure precede disease?])
- Differential misclassification of Exposure
- Incomplete records
- Confounding
- Generalizability poor if cases not representative of all cases

Cross-sectional Studies (prevalence study)

Advantages and Disadvantages

Advantages:
- Efficient & relatively inexpensive
- Ethical
- Measurement bias minimal
- Generates Hypotheses

Disadvantages:
- Time-sensitive (temporal relationships change)
- Prevalence bias (long duration cases in the population bias the results)
- Differential misclassification of Exposure & Outcome (selection bias)
- Confounding
- Not useful for rare diseases

Ecological Studies (correlational studies)

Select groups (countries, states, regions etc.)
Ascertain Exposure & Outcome on Groups
Usually measure Exposure by continuous variables (average per capita consumption) and incidence rates for Outcomes
E & O linked to groups, not individuals

Advantages:
- Efficient
- Test hypotheses
- Wide range of E & O studies possible

Disadvantages:
- Ecological Fallacy
- Imprecise measurements
- Confounding
- Comparable populations difficult to identify
Descriptive Studies

- Case report
- Case Series (interventional or observational; ≥ 2 subjects)
- Registry Summary
- Survey

 Advantages: inexpensive; rapid; document complications of therapy

 Disadvantages: may not be generalizable; exceptions; non-representative samples; surveys often have poor response rate; no hypothesis testing – no comparison group; cannot establish cause-effect relationships